DocumentCode :
867280
Title :
Noisy input/output system identification using cumulants and the Steiglitz-McBride algorithm
Author :
Anderson, John M M ; Giannakis, Georgios B.
Author_Institution :
Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA
Volume :
44
Issue :
4
fYear :
1996
fDate :
4/1/1996 12:00:00 AM
Firstpage :
1021
Lastpage :
1024
Abstract :
We consider the problem of identifying a linear, time-invariant system from its noisy input/output data. The input and output are assumed to be non-Gaussian, while the input and output noises are assumed to be mutually correlated, colored, and Gaussian. Using third-order cross- and auto-cumulants, we extend the well-known Steiglitz-McBride (1965) identification method to cumulant domains, and show that it is consistent under a certain “third-order” persistency of excitation condition. By comparison, the Steiglitz-McBride method is not consistent when either input noise is present or when the output noise is colored. For an empirical assessment, we provide simulations that demonstrate the proposed method´s usefulness
Keywords :
Gaussian noise; higher order statistics; identification; linear systems; noise; Gaussian noise; Steiglitz-McBride algorithm; Steiglitz-McBride identification method; colored noise; cumulants; input noise; linear system; mutually correlated noise; noisy input/output data; noisy input/output system identification; nonGaussian input; nonGaussian ouput; output noise; simulations; third-order autocumulants; third-order cross-cumulants; third-order excitation condition; time-invariant system; Colored noise; Computer errors; Gaussian noise; Nonlinear systems; Polynomials; Samarium; Signal processing algorithms; Statistics; System identification; White noise;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.492561
Filename :
492561
Link To Document :
بازگشت