DocumentCode :
867810
Title :
Maximum likelihood localization of 2-D patterns in the Gauss-Laguerre transform domain: theoretic framework and preliminary results
Author :
Neri, Alessandro ; Jacovitti, Giovanni
Author_Institution :
Appl. Electron. Dept., Univ. of Rome, Italy
Volume :
13
Issue :
1
fYear :
2004
Firstpage :
72
Lastpage :
86
Abstract :
Usual approaches to localization, i.e., joint estimation of position, orientation and scale of a bidimensional pattern employ suboptimum techniques based on invariant signatures, which allow for position estimation independent of scale and orientation. In this paper a Maximum Likelihood method for pattern localization working in the Gauss-Laguerre Transform (GLT) domain is presented. The GLT is based on an orthogonal family of Circular Harmonic Functions with specific radial profiles, which permits optimum joint estimation of position and scale/rotation parameters looking at the maxima of a "Gauss-Laguerre Likelihood Map." The Fisher information matrix for any given pattern is given and the theoretical asymptotic accuracy of the parameter estimates is calculated through the Cramer Rao Lower Bound. Application of the ML estimation method is discussed and an example is provided.
Keywords :
image processing; matrix algebra; maximum likelihood estimation; transforms; 2D patterns; Cramer Rao lower bound; Fisher information matrix; Gauss-Laguerre likelihood map; Gauss-Laguerre transform domain; asymptotic accuracy; circular harmonic function; maximum likelihood localization; pattern localization; pattern recognition; position estimation; radial profiles; rotation parameter estimation; scale parameter estimation; Computational complexity; Fourier transforms; Gaussian processes; Image databases; Image registration; Maximum likelihood estimation; Parameter estimation; Pattern recognition; Robot kinematics; Service robots; Algorithms; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Likelihood Functions; Models, Statistical; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2003.818021
Filename :
1262015
Link To Document :
بازگشت