DocumentCode :
868742
Title :
Steady-State Modeling of Series-Connected Five-Phase and Six-Phase Two-Motor Drives
Author :
Levi, Emil ; Jones, Martin ; Vukosavic, Slobodan N. ; Toliyat, Hamid A.
Author_Institution :
Sch. of Eng., Liverpool John Moores Univ., Liverpool
Volume :
44
Issue :
5
fYear :
2008
Firstpage :
1559
Lastpage :
1568
Abstract :
Two series-connected two-motor drive systems with a single inverter supply have been proposed recently. The first one consists of two five-phase machines supplied from a single five-phase inverter, whereas the second one comprises one symmetrical six-phase machine, a three-phase machine, and a single six-phase inverter. It has been verified experimentally that, by introducing an appropriate phase transposition in the series connection, completely independent dynamic control of the two machines can be realized using principles of vector control. Detailed dynamic models in the stationary common reference frame have also been reported for the two drive systems. These are taken here as the starting point, and equivalent circuit steady-state representation of the series-connected two-motor drive systems is developed. The equivalent circuits can then be used to evaluate steady-state characteristics of the drives in the same manner as it is done for three-phase induction machines, as well as for the inverter design. The dc-link voltage required for operation of the two series-connected machines is investigated next. It is shown that the specific winding connections lead to a dc voltage requirement that is smaller than it would have been had the windings of the two machines been connected directly in series. Experimental results, obtained during steady-state operation of the series-connected five-phase and six-phase two-motor drives, are presented. Developed equivalent circuit representation is finally verified by comparing calculated and experimentally obtained values for various voltages of the two-motor drives.
Keywords :
induction motor drives; invertors; independent dynamic control; series-connected five-phase motor drives; single five-phase inverter; six-phase two-motor drives; steady-state modeling; Equivalent circuits; Fault tolerance; Induction machines; Industry Applications Society; Inverters; Machine vector control; Machine windings; Stator windings; Steady-state; Voltage; Equivalent circuits; five-phase; induction motors; multimotor drives; multiphase machines; six-phase; vector control;
fLanguage :
English
Journal_Title :
Industry Applications, IEEE Transactions on
Publisher :
ieee
ISSN :
0093-9994
Type :
jour
DOI :
10.1109/TIA.2008.2002268
Filename :
4629372
Link To Document :
بازگشت