DocumentCode :
874112
Title :
Amplitude modulation drive to rectangular-plate linear ultrasonic motors with vibrators dimensions 8 mm /spl times/ 2.16 mm /spl times/ 1 mm
Author :
Ming, Yang ; Hanson, Ben ; Levesley, Martin C. ; Walker, Peter G. ; Watterson, Kevin G.
Author_Institution :
Dept. of Instrum., Shanghai Jiao-tong Univ.
Volume :
53
Issue :
12
fYear :
2006
fDate :
12/1/2006 12:00:00 AM
Firstpage :
2435
Lastpage :
2441
Abstract :
In this paper, to exploit the contribution from not only the stators but also from other parts of miniature ultrasonic motors, an amplitude modulation drive is proposed to drive a miniature linear ultrasonic motor consisting of two rectangular piezoelectric ceramic plates. Using finite-element software, the first longitudinal and second lateral-bending frequencies of the vibrator are shown to be very close when its dimensions are 8 mm times 2.16 mm times 1 mm. So one single frequency power should be able to drive the motor. However, in practice the motor is found to be hard to move with a single frequency power because of its small vibration amplitudes and big frequency difference between its longitudinal and bending resonance, which is induced by the boundary condition variation. To drive the motor effectively, an amplitude modulation drive is used by superimposing two signals with nearly the same frequencies, around the resonant frequency of the vibrators of the linear motor. When the amplitude modulation frequency is close to the resonant frequency of the vibrator´s surroundings, experimental results show that the linear motor can move back and forward with a maximum thrust force (over 0.016 N) and a maximum velocity (over 50 mm/s)
Keywords :
amplitude modulation; finite element analysis; piezoceramics; ultrasonic motors; 1 mm; 2.16 mm; 8 mm; amplitude modulation; bending resonance; finite element software; frequency difference; lateral bending frequency; longitudinal resonance; maximum thrust force; maximum velocity; piezoelectric ceramic plate; rectangular-plate linear ultrasonic motors; resonant frequency; single frequency power; stators; vibration amplitude; vibrators dimension; Amplitude modulation; Boundary conditions; Ceramics; Chirp modulation; Heart; Mechanical engineering; Resonance; Resonant frequency; Stators; Vibrations;
fLanguage :
English
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-3010
Type :
jour
DOI :
10.1109/TUFFC.2006.191
Filename :
4037279
Link To Document :
بازگشت