• DocumentCode
    87679
  • Title

    Engineering Nanowire n-MOSFETs at L_{g}< 8~{\\rm nm}

  • Author

    Mehrotra, Saumitra ; SungGeun Kim ; Kubis, Tillmann ; Povolotskyi, Michael ; Lundstrom, Mark S. ; Klimeck, Gerhard

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA
  • Volume
    60
  • Issue
    7
  • fYear
    2013
  • fDate
    Jul-13
  • Firstpage
    2171
  • Lastpage
    2177
  • Abstract
    As metal-oxide-semiconductor field-effect transistors (MOSFETs) channel lengths (Lg) are scaled to lengths shorter than Lg <; 8 nm source-drain tunneling starts to become a major performance limiting factor. In this scenario, a heavier transport mass can be used to limit source-drain (S-D) tunneling. Taking InAs and Si as examples, it is shown that different heavier transport masses can be engineered using strain and crystal-orientation engineering. Full-band extended device atomistic quantum transport simulations are performed for nanowire MOSFETs at Lg <; 8 nm in both ballistic and incoherent scattering regimes. In conclusion, a heavier transport mass can indeed be advantageous in improving ON-state currents in ultrascaled nanowire MOSFETs.
  • Keywords
    MOSFET; nanowires; tunnelling; S-D tunneling; metal-oxide-semiconductor field-effect transistors; nanowire n-MOSFET; source-drain tunneling; InAs; Si; nanowire; quantum transport; source-drain tunneling; strain; tight-binding (TB) approach;
  • fLanguage
    English
  • Journal_Title
    Electron Devices, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9383
  • Type

    jour

  • DOI
    10.1109/TED.2013.2263806
  • Filename
    6523122