DocumentCode :
877100
Title :
Supercapacitor thermal- and electrical-behaviour modelling using ANN
Author :
Marie-Francoise, J.-N. ; Gualous, H. ; Berthon, A.
Author_Institution :
Univ. de Franche-Comte, Besancon, France
Volume :
153
Issue :
2
fYear :
2006
fDate :
3/2/2006 12:00:00 AM
Firstpage :
255
Lastpage :
262
Abstract :
The paper presents the development of a modelling tool for evaluation of the thermal and electrical behaviour of supercapacitors, using an artificial neural network (ANN). The principle consists of a black-box multiple-input single-output (MISO) model. The system inputs are temperature, current and supercapacitor values, and the output is the supercapacitor voltage. The relationship between inputs and output is established by the learning and the validation of the ANN model from experimental charge and discharge cycles of supercapacitors at different currents and different temperatures. Once the training parameters are known, the ANN simulator can predict different operational parameters of the supercapacitors. The update parameters of the ANN model are performed using the Levenberg-Marquardt method to minimise the error between the output of the system and the predicted output. This methodology using ANN networks may provide useful information on the transient behaviour of the supercapacitors taking into account thermal influences. Experimental results will also validate the simulation results.
Keywords :
learning (artificial intelligence); neural nets; power engineering computing; supercapacitors; transients; ANN simulator; Levenberg-Marquardt method; artificial neural network; black-box multiple-input single-output model; charge cycle; discharge cycle; electrical behaviour; error minimisation; supercapacitor; thermal behaviour; training parameters; transient behaviour;
fLanguage :
English
Journal_Title :
Electric Power Applications, IEE Proceedings -
Publisher :
iet
ISSN :
1350-2352
Type :
jour
DOI :
10.1049/ip-epa:20050096
Filename :
1608663
Link To Document :
بازگشت