Title :
Fully depleted n-MOSFETs on supercritical thickness strained SOI
Author :
Lauer, Isaac ; Langdo, T.A. ; Cheng, Z.-Y. ; Fiorenza, J.G. ; Braithwaite, G. ; Currie, M.T. ; Leitz, C.W. ; Lochtefeld, A. ; Badawi, H. ; Bulsara, M.T. ; Somerville, M. ; Antoniadis, D.A.
Author_Institution :
Microsystems Technol. Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA
Abstract :
Strained silicon-on-insulator (SSOI) is a new material system that combines the carrier transport advantages of strained Si with the reduced parasitic capacitance and improved MOSFET scalability of thin-film SOI. We demonstrate fabrication of highly uniform SiGe-free SSOI wafers with 20% Ge equivalent strain and report fully depleted n-MOSFET results. We show that enhanced mobility is maintained in strained Si films transferred directly to SiO2 from relaxed Si0.8Ge0.2 virtual substrates, even after a generous MOSFET fabrication thermal budget. Further, we find the usable strained-Si thickness of SSOI significantly exceeds the critical thickness of strained Si/SiGe without deleterious leakage current effects typically associated with exceeding this limit.
Keywords :
MOSFET; electron mobility; elemental semiconductors; silicon compounds; silicon-on-insulator; MOSFET fabrication thermal budget; MOSFET scalability; SSOI wafers; Si-SiGe; Si0.8Ge0.2; SiO; carrier transport; critical thickness; fully depleted n-MOSFETs; leakage current; parasitic capacitance; silicon alloys; silicon films; silicon-on-insulator; supercritical thickness strained SOI; thin-film SOI; virtual substrates; wafer bonding; Capacitive sensors; Fabrication; MOSFET circuits; Parasitic capacitance; Scalability; Semiconductor films; Semiconductor thin films; Silicon germanium; Silicon on insulator technology; Substrates;
Journal_Title :
Electron Device Letters, IEEE
DOI :
10.1109/LED.2003.822686