Title :
An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces
Author :
Xiang Ying ; Shi-Qing Xin ; Qian Sun ; Ying He
Author_Institution :
Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
Abstract :
Poisson disk sampling has excellent spatial and spectral properties, and plays an important role in a variety of visual computing. Although many promising algorithms have been proposed for multidimensional sampling in euclidean space, very few studies have been reported with regard to the problem of generating Poisson disks on surfaces due to the complicated nature of the surface. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. In sharp contrast to the conventional parallel approaches, our method neither partitions the given surface into small patches nor uses any spatial data structure to maintain the voids in the sampling domain. Instead, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. Our algorithm guarantees that the generated Poisson disks are uniformly and randomly distributed without bias. It is worth noting that our method is intrinsic and independent of the embedding space. This intrinsic feature allows us to generate Poisson disk patterns on arbitrary surfaces in IRn. To our knowledge, this is the first intrinsic, parallel, and accurate algorithm for surface Poisson disk sampling. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.
Keywords :
computational geometry; differential geometry; graphics processing units; parallel algorithms; spatial data structures; Euclidean space; GPU; Poisson disk generation problem; Poisson disk pattern generation; arbitrary surfaces; geodesic distance; intrinsic algorithm; multidimensional sampling; parallel Poisson disk sampling; priority values; spatial data structure; spatial properties; spatial varying density function; spectral properties; visual computing; Algorithm design and analysis; Approximation algorithms; Data structures; Instruction sets; Partitioning algorithms; Spatial databases; GPU; Parallel poisson disk sampling; geodesic distance; intrinsic algorithm; unbiased sampling;
Journal_Title :
Visualization and Computer Graphics, IEEE Transactions on
DOI :
10.1109/TVCG.2013.63