Title :
In0.5Ga0.5As-Based Metal - Oxide - Semiconductor Capacitor on GaAs Substrate Using Metal - Organic Chemical Vapor Deposition
Author :
Nguyen, Ha Q. ; Trinh, H.D. ; Chang, Edward Yi ; Lee, C.T. ; Shin Yuan Wang ; Yu, H.W. ; Hsu, C.H. ; Nguyen, C.L.
Author_Institution :
Dept. of Mater. Sci. & Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan
Abstract :
We demonstrate the good-performance In0.5Ga0.5As-based metal-oxide-semiconductor capacitor (MOSCAP) on GaAs substrate using metal-organic chemical vapor deposition technique. In0.5Ga0.5As film grown on GaAs substrate is proved to be high quality with threading dislocation density as low as 106 cm-2. The performance of the MOSCAPs is comparable to that of In0.53Ga0.47As/InP-based devices grown by molecular beam epitaxy technique. The devices show a nice capacitance-voltage response, with small frequency dispersion. The parallel conductance contours show the free movement of Fermi level with the gate bias. Acceptable interface trap density Dit values of 5 × 1011-2 × 1012 eV-1 · cm-2 in the energy range of 0.64-0.52 eV above the InGaAs valence band maximum in In0.5Ga0.5As/GaAs MOSCAPs obtained by conductance methods were shown.
Keywords :
Fermi level; III-V semiconductors; MOCVD; MOS capacitors; gallium arsenide; indium compounds; interface states; molecular beam epitaxial growth; Fermi level; GaAs; GaAs substrate; In0.5Ga0.5As; MOSCAP; capacitance-voltage response; conductance method; electron volt energy 0.64 eV to 0.52 eV; frequency dispersion; interface trap density; metal-organic chemical vapor deposition; metal-oxide-semiconductor capacitor; molecular beam epitaxy technique; parallel conductance; threading dislocation density; Aluminum oxide; Gallium arsenide; Indium gallium arsenide; Indium phosphide; MOCVD; Silicon; Substrates; $hbox{Al}_{2}hbox{O}_{3}$; InGaAs; metal–organic chemical vapor deposition (MOCVD); metal–oxide–semiconductor (MOS) capacitor (MOSCAP);
Journal_Title :
Electron Devices, IEEE Transactions on
DOI :
10.1109/TED.2012.2228201