DocumentCode :
885400
Title :
Prediction of plasma etching using a polynomial neural network
Author :
Kim, Byungwhan ; Kim, Dong Won ; Park, Gwi Tae
Author_Institution :
Dept. of Electron. Eng., Sejong Univ., Seoul, South Korea
Volume :
31
Issue :
6
fYear :
2003
Firstpage :
1330
Lastpage :
1336
Abstract :
A polynomial neural network (PNN) is first applied to construct a predictive model of plasma etch processes. The process was characterized by a full-factorial experiment, and two attributes modeled are an etch rate and a dc bias. The training and test data for the etch rate consisted of 32 and 15 patterns, respectively. For the dc bias, the training and test data were composed of 34 and 17 patterns, respectively. Prediction performance of PNN was optimized with a variation in the number of input factors and in the polynomial type. For each data type, 27 cases were evaluated. The root mean squared prediction accuracy is 8.49 nm/min and 5.43 V for the optimized etch rate and dc-bias models, respectively. For comparison, backpropagation neural network (BPNN) and three types of statistical regression models were constructed. Five training factors involved in training the BPNN were experimentally optimized. Compared to other models, the PNN model demonstrated an improvement of more than 30% and 80% in modeling the etch rate and dc bias, respectively. By the demonstrated high prediction ability, the PNN can be effectively used to model and control complex plasma processes.
Keywords :
backpropagation; design of experiments; mean square error methods; neural nets; plasma materials processing; polynomials; regression analysis; semiconductor process modelling; sputter etching; DC bias; backpropagation neural network; etch rate; full-factorial experiment; number of input factors; partial description of data; plasma etch processes; polynomial neural network; predictive model; regression polynomial structure; root mean squared prediction accuracy; statistical regression models; training data; Etching; Neural networks; Plasma applications; Plasma chemistry; Plasma density; Plasma materials processing; Polynomials; Predictive models; Silicon carbide; Testing;
fLanguage :
English
Journal_Title :
Plasma Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0093-3813
Type :
jour
DOI :
10.1109/TPS.2003.820681
Filename :
1264911
Link To Document :
بازگشت