DocumentCode :
888167
Title :
Leading guard digits in finite precision redundant representations
Author :
Kornerup, Peter ; Muller, Jean-Michel
Author_Institution :
Dept. of Math. & Comput. Sci., Univ. of Southern Denmark, Odense, Denmark
Volume :
55
Issue :
5
fYear :
2006
fDate :
5/1/2006 12:00:00 AM
Firstpage :
541
Lastpage :
548
Abstract :
Redundant number representations are generally used to allow constant time additions, based on the fact that only bounded carry-ripples take place. But, carries may ripple out into positions which may not be needed to represent the final value of the result and, thus, a certain amount of leading guard digits are needed to correctly determine the result. Also, when cancellation during subtractions occurs, there may be nonzero digits in positions not needed to represent the result of the calculation. It is shown here that, for normal redundant digit sets with radix greater than two, a single guard digit is sufficient to determine the value of such an arbitrary length prefix of leading nonzero digits. This is also the case for the unsigned carry-save representation, whereas two guard digits are sufficient, and may be necessary, for additions in the binary signed-digit and 2´s complement carry-save representations. Thus, only the guard digits need to be retained during sequences of additions and subtractions. At suitable points, the guard digits may then be converted into a single digit, representing the complete prefix.
Keywords :
redundant number systems; binary signed-digit; finite precision redundant representation; leading guard digit; redundant digit; unsigned carry-save representation; Circuits; Costs; Hardware; Redundant representations; leading guard digits; multioperand additions; pseudo overflows.;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/TC.2006.79
Filename :
1613835
Link To Document :
بازگشت