DocumentCode :
891597
Title :
Some results on the covering radii of Reed-Muller codes
Author :
Hou, Xiang-Dong
Author_Institution :
Dept. of Math. & Stat., Wright State Univ., Dayton, OH, USA
Volume :
39
Issue :
2
fYear :
1993
fDate :
3/1/1993 12:00:00 AM
Firstpage :
366
Lastpage :
378
Abstract :
Let R(r,m) be the rth-order Reed-Muller code of length 2m and let ρ(r,m ) be its covering radius. R(2,7), R(2,8), R (3,7), and R(4,8) are among those smallest Reed-Muller codes whose covering radii are not known. New bounds for the covering radii of these four codes are obtained. The results are ρ(2,7)⩾40, ρ(2,8)⩾84, 20⩽ρ(3,7)⩽23, and ρ(4,8)⩾22. Noncomputer proofs for the known results that ρ(2,6)=18 and that R(1,5) is normal are given
Keywords :
error correction codes; Reed-Muller codes; bounds; covering radius; error correcting codes; normality; Combinatorial mathematics; Councils; Cryptography; Error correction codes; Statistics;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.212268
Filename :
212268
Link To Document :
بازگشت