DocumentCode :
891899
Title :
Avoiding decoder malfunction in the Peterson-Gorenstein-Zierler decoder
Author :
Dür, Arne
Author_Institution :
Inst. fuer Math., Innsbruck Univ., Austria
Volume :
39
Issue :
2
fYear :
1993
fDate :
3/1/1993 12:00:00 AM
Firstpage :
640
Lastpage :
643
Abstract :
BCH decoders based on the Peterson-Gorenstein-Zierler algorithm can malfunction and produce output vectors that are no codewords. To avoid this malfunction a simple additional check is proposed that can be performed before the computation of the error locations. The additional check consists of the minimum number of algebraic equations in the syndrome components that are necessary over a general field to obtain a bounded-distance decoder
Keywords :
BCH codes; Reed-Solomon codes; decoding; error correction codes; BCH codes; Peterson-Gorenstein-Zierler algorithm; Reed-Solomon codes; bounded-distance decoder; decoder malfunction; error correction; syndrome components; Algorithm design and analysis; Decoding; Equations; Error correction; Hamming distance; Linear code; Polynomials; Reed-Solomon codes; Vectors;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.212296
Filename :
212296
Link To Document :
بازگشت