DocumentCode :
892083
Title :
A geometric approach to the maximum likelihood spectral estimator for sinusoids in noise
Author :
Foias, C. ; Frazho, Arthur E. ; Sherman, Peter J.
Author_Institution :
Dept. of Math., Indiana Univ., Bloomington, IN, USA
Volume :
34
Issue :
5
fYear :
1988
fDate :
9/1/1988 12:00:00 AM
Firstpage :
1066
Lastpage :
1070
Abstract :
The problem of estimating sinusoids that have been corrupted by additive stationary noise is addressed. It is shown how the Naimark dilation for the data correlation sequence can be used to provide additional insight into some fundamental results on orthogonal polynomials and to give a new interpretation of the maximum-likelihood (ML) spectral estimator
Keywords :
correlation methods; noise; polynomials; spectral analysis; Naimark dilation; additive stationary noise; data correlation sequence; geometric approach; maximum likelihood spectral estimator; noise; orthogonal polynomials; sinusoids; Additive noise; Colored noise; Frequency estimation; H infinity control; Hilbert space; Maximum likelihood estimation; Polynomials; Signal to noise ratio; Working environment noise; Yield estimation;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.21232
Filename :
21232
Link To Document :
بازگشت