DocumentCode :
894089
Title :
A New Digital Predictive Predistorter for Behavioral Power Amplifier Linearization
Author :
Montoro, G. ; Gilabert, P.L. ; Bertran, E. ; Cesari, A. ; Silveira, D.D.
Author_Institution :
Dept. of Signal Theor. & Commun., Univ. Politecnica de Catalunya, Barcelona
Volume :
17
Issue :
6
fYear :
2007
fDate :
6/1/2007 12:00:00 AM
Firstpage :
448
Lastpage :
450
Abstract :
This letter presents a new digital adaptive predistorter (PD) for power amplifier (PA) linearization based on a nonlinear auto-regressive moving average (NARMA) structure. The distinctive characteristic of this PD is its straightforward deduction from the NARMA PA model, without the need of using an indirect learning approach to identify the PD function. The PD itself presents a NARMA structure, and hence it can be quickly implemented by means of lookup tables. Single and multicarrier modulated signals collected from a three-stage LDMOS class AB PA, with a maximum output power of 48-dBm CW have been used to validate the linearity performance of this new predictive predistorter
Keywords :
autoregressive moving average processes; digital circuits; digital radio; microwave power amplifiers; nonlinear distortion; amplifier distortion; behavioral power amplifier linearization; digital predictive predistorter; digital radio; direct learning approach; microwave power amplifiers; nonlinear auto-regressive moving average structure; radio transmitters; Communication standards; Degradation; Digital signal processing; Linearity; Peak to average power ratio; Power amplifiers; Predistortion; Radio frequency; Radio transmitters; Radiofrequency amplifiers; Amplifier distoriton; digital predistorter (PD); digital radio; direct learning approach; linearization; microwave power amplifiers (PAs); nonlinear auto-regressive moving average (NARMA); radio transmitters;
fLanguage :
English
Journal_Title :
Microwave and Wireless Components Letters, IEEE
Publisher :
ieee
ISSN :
1531-1309
Type :
jour
DOI :
10.1109/LMWC.2007.897797
Filename :
4220706
Link To Document :
بازگشت