DocumentCode :
895247
Title :
Convergent algorithms for pattern recognition in nonlinearly evolving nonstationary environment
Author :
de Figueiredo, R.J.P.
Volume :
56
Issue :
2
fYear :
1968
Firstpage :
188
Lastpage :
189
Abstract :
Blaydon and Ho have recently proposed two algorithms to determine the probability p(A/x) that a sample with the set of attributes x belongs to a pattern class A, assuming a fixed p(A/x). The present letter modifies these algorithms to allow p(A/x) ≡ pi(A/x), i= 1, 2, ..., to evolve (not necessarily linearly) with i. Dynamic stochastic approximation arguments are used.
Keywords :
Approximation algorithms; Convergence; Eigenvalues and eigenfunctions; Pattern recognition; Sampling methods; State estimation; Stochastic processes;
fLanguage :
English
Journal_Title :
Proceedings of the IEEE
Publisher :
ieee
ISSN :
0018-9219
Type :
jour
DOI :
10.1109/PROC.1968.6213
Filename :
1448143
Link To Document :
بازگشت