• DocumentCode
    8984
  • Title

    Polyadic Constacyclic Codes

  • Author

    Bocong Chen ; Dinh, Hai Q. ; Yun Fan ; San Ling

  • Author_Institution
    Sch. of Phys. & Math. Sci., Nanyang Technol. Univ., Singapore, Singapore
  • Volume
    61
  • Issue
    9
  • fYear
    2015
  • fDate
    Sept. 2015
  • Firstpage
    4895
  • Lastpage
    4904
  • Abstract
    For any given positive integer m, a necessary and sufficient condition for the existence of Type-I m-adic constacyclic codes is given. Furthermore, for any given integer s, a necessary and sufficient condition for s to be a multiplier of a Type-I polyadic constacyclic code is given. As an application, some optimal codes from Type-I polyadic constacyclic codes, including generalized Reed-Solomon codes and alternant maximum distance separable codes, are constructed.
  • Keywords
    Reed-Solomon codes; cyclic codes; decoding; Berlekamp-Welch decoding algorithm; alternant maximum distance separable codes; generalized Reed-Solomon codes; optimal codes; polyadic constacyclic codes; type-I m-adic constacyclic codes; Cost accounting; Decoding; Electronic mail; Indexes; Polynomials; Reed-Solomon codes; Zirconium; $p$ -adic valuation; Berlekamp- Welch decoding algorithm.; Berlekamp-Welch decoding algorithm; Polyadic constacyclic code; alternant code; generalized Reed-Solomon code;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2015.2451656
  • Filename
    7154464