Title :
A Runtime Analysis of Evolutionary Algorithms for Constrained Optimization Problems
Author :
Zhou, Yuren ; He, Jun
Author_Institution :
South China Univ. of Technol., Guangzhou
Abstract :
Although there are many evolutionary algorithms (EAs) for solving constrained optimization problems, there are few rigorous theoretical analyses. This paper presents a time complexity analysis of EAs for solving constrained optimization. It is shown when the penalty coefficient is chosen properly, direct comparison between pairs of solutions using penalty fitness function is equivalent to that using the criteria ldquosuperiority of feasible pointrdquo or ldquosuperiority of objective function value.rdquo This paper analyzes the role of penalty coefficients in EAs in terms of time complexity. The results show that in some examples, EAs benefit greatly from higher penalty coefficients, while in other examples, EAs benefit from lower penalty coefficients. This paper also investigates the runtime of EAs for solving the 0-1 knapsack problem and the results indicate that the mean first hitting times ranges from a polynomial-time to an exponential time when different penalty coefficients are used.
Keywords :
computational complexity; constraint theory; evolutionary computation; knapsack problems; optimisation; constrained optimization problems; evolutionary algorithm; exponential time; knapsack problem; objective function; penalty coefficient; penalty fitness function; runtime analysis; time complexity analysis; Algorithm design and analysis; Computer science; Constraint optimization; Constraint theory; Convergence; Evolutionary computation; Helium; Polynomials; Runtime; Stochastic processes; 0–1 knapsack problems; constrained optimization problem; evolutionary algorithms (EAs); time complexity;
Journal_Title :
Evolutionary Computation, IEEE Transactions on
DOI :
10.1109/TEVC.2006.888929