DocumentCode :
900557
Title :
Two contributions to blind source separation using time-frequency distributions
Author :
Févotte, Cédric ; Doncarli, Christian
Author_Institution :
Inst. de Recherche en Commun. et Cybernetique de Nantes, UMR CNRS, Nantes, France
Volume :
11
Issue :
3
fYear :
2004
fDate :
3/1/2004 12:00:00 AM
Firstpage :
386
Lastpage :
389
Abstract :
We present two improvements/extensions of a previous deterministic blind source separation (BSS) technique, by Belouchrani and Amin, that involves joint-diagonalization of a set of Cohen´s class spatial time-frequency distributions. The first contribution concerns the extension of the BSS technique to the stochastic case using spatial Wigner-Ville spectrum. Then, we show that Belouchrani and Amin´s technique can be interpreted as a practical implementation of the general equations we provide in the stochastic case. The second contribution is a new criterion aimed at selecting more efficiently the time-frequency locations where the spatial matrices should be joint-diagonalized, introducing single autoterms selection. Simulation results on stochastic time-varying autoregressive moving average (TVARMA) signals demonstrate the improved efficiency of the method.
Keywords :
Wigner distribution; autoregressive moving average processes; blind source separation; spectral analysis; time-frequency analysis; Belouchrani-Amin technique; blind source separation technique; joint-diagonalized spatial matrices; nonstationary sources; spatial Wigner-Ville spectrum; spatial time-frequency distributions; stochastic signals; time-varying autoregressive moving average signals; Additive noise; Autoregressive processes; Blind source separation; Equations; Helium; Signal processing; Source separation; Statistical analysis; Stochastic processes; Stochastic resonance;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2003.819343
Filename :
1268036
Link To Document :
بازگشت