Title :
A Recursive Blind Adaptive Identification Algorithm and Its Almost Sure Convergence
Author :
Radenkovic, Miloje S. ; Bose, Tamal
Author_Institution :
Colorado Univ., Denver
fDate :
6/1/2007 12:00:00 AM
Abstract :
This paper presents a novel blind adaptive identification algorithm based on least-squares type arguments. Parameter estimates are recursively updated with each output measurement, without resorting to any matrix inversion operation. It is proved that the parameter estimates converge almost surely (a.s.) toward a scalar multiple of the true parameters. Possible application of this algorithm to the channel equalization problem is discussed.
Keywords :
adaptive equalisers; blind equalisers; channel estimation; least squares approximations; recursive estimation; blind adaptive identification; channel equalization; convergence; least-squares type arguments; parameter estimates; recursive algorithm; scalar multiple; Adaptive equalizers; Antenna measurements; Blind equalizers; Convergence; Eigenvalues and eigenfunctions; Higher order statistics; Parameter estimation; Receiving antennas; Recursive estimation; Signal processing; Almost sure eigenvalue; blind adaptive identification; blind equalization; recursive parameter estimation;
Journal_Title :
Circuits and Systems I: Regular Papers, IEEE Transactions on
DOI :
10.1109/TCSI.2007.895522