DocumentCode :
901982
Title :
An extension of Szász´s theorem for random signal representation
Author :
Young, Tzay
Volume :
56
Issue :
12
fYear :
1968
Firstpage :
2195
Lastpage :
2196
Abstract :
Szász´s theorem is extended to the exponential representation of random signals. It is shown that for the class of random processes with square integrable autocorrelation functions R(t, τ), the set {eskt} is complete if and only if this set satisfies Szász´s condition. The result also holds for the class of random processes having absolutely integrable R(t, t).
Keywords :
Autocorrelation; Circuit theory; DH-HEMTs; Density measurement; Energy measurement; Laplace equations; Probability; Random processes; Signal analysis; Signal representations;
fLanguage :
English
Journal_Title :
Proceedings of the IEEE
Publisher :
ieee
ISSN :
0018-9219
Type :
jour
DOI :
10.1109/PROC.1968.6857
Filename :
1448787
Link To Document :
بازگشت