DocumentCode :
903073
Title :
Vibration of micromachined circular piezoelectric diaphragms
Author :
Eunki Hong ; Trolier-McKinstry, Susan ; Smith, Ross ; Krishnaswamy, S.V. ; Freidhoff, C.B.
Author_Institution :
Mater. Res. Inst., Pennsylvania State Univ., University Park, PA, USA
Volume :
53
Issue :
4
fYear :
2006
fDate :
4/1/2006 12:00:00 AM
Firstpage :
697
Lastpage :
706
Abstract :
The electrically and mechanically excited resonances in micromachined circular piezoelectric diaphragms have been investigated. The diaphragm structures were piezoelectric unimorphs consisting of Pb(Zr/sub 0.52/,Ti/sub 0.48/)O/sub 3/ (PZT) films and thermally grown silicon oxide (SiO/sub 2/) layers. For electrical excitation, ring-shaped interdigitated (IDT) electrodes formed on the top of the PZT layer were used to induce strain in the diaphragms. The diaphragm structures behaved much like circular membranes in which the membrane tension was /spl sim/206 N/m, at the fundamental modes. For higher modes, the resonance frequencies deviated from the theoretical values due to the finite stiffness of the diaphragms. Under mechanical drive, both symmetric and asymmetric modes were excited. However, for electrical excitation, the symmetric modes were dominant due to the symmetry of the driving IDT electrodes. At a pressure of 727 Torr, the quality factor was /spl sim/250, and this rose to 2000 at pressures below 1 Torr. When a forward bias was applied to the diaphragm, the membrane tension decreased, but under reverse biases the tension increased. However, because of repoling under reverse biases greater than the coercive field of the PZT film, the achievable increase in the membrane tension was limited. In the diaphragm structure, the nonlinear vibration was governed by geometric nonlinearity rather than material nonlinearity. In addition, evidence of non-180/spl deg/ domain wall motion of the PZT layer in released diaphragms was observed.
Keywords :
coercive force; diaphragms; interdigital transducers; lead compounds; micromachining; piezoelectric thin films; silicon compounds; titanium compounds; vibrations; zirconium compounds; 727 torr; IDT electrodes; PZT film; Pb(Zr/sub 0.52/Ti/sub 0.48/)O/sub 3/; SiO/sub 2/; circular piezoelectric diaphragms; coercive field; electrically excited resonances; geometric nonlinearity; mechanically excited resonances; membrane tension; micromachining; nonlinear vibration; piezoelectric unimorphs; thermally grown silicon oxide; Biomembranes; Capacitive sensors; Electrodes; Piezoelectric films; Q factor; Resonance; Resonant frequency; Semiconductor films; Silicon; Vibrations;
fLanguage :
English
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-3010
Type :
jour
DOI :
10.1109/TUFFC.2006.1621496
Filename :
1621496
Link To Document :
بازگشت