Title :
On the Values of Kloosterman Sums
Author :
Shparlinski, Igor E.
Author_Institution :
Dept. of Comput., Macquarie Univ., Sydney, NSW
fDate :
6/1/2009 12:00:00 AM
Abstract :
Given a prime p and a positive integer n, we show that the shifted Kloosterman sums SigmaxisinF p nPsi(x + alphaxpn-2)=SigmaxisinF* p nPsi(x+alphax-1)+1, alphaisinF*pn where Psi is a nontrivial additive character of a finite field Fpn of pn elements, do not vanish if alpha belongs to a small subfield Fpm sube Fpn. This complements recent results of P. Charpin and G. Gong which in turn were motivated by some applications to bent functions.
Keywords :
Galois fields; cryptography; number theory; Kloosterman sum; bent function; cryptography; finite field; positive integer; prime number; Codes; Cryptography; Galois fields; Polynomials; Bent functions; Kloosterman sums; Lucas and Lehmer numbers;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2009.2018320