DocumentCode :
910332
Title :
An upper bound on average estimation error in nonlinear systems
Author :
Seidman, Lawrence P.
Volume :
14
Issue :
2
fYear :
1968
fDate :
3/1/1968 12:00:00 AM
Firstpage :
243
Lastpage :
250
Abstract :
An upper bound is obtained on the probability density of the estimate of the parameter m when a nonlinear function s(t, m) is transmitted over a channel that adds Gaussian noise, and maximum likelihood or maximum a posteriori estimation is used. If this bound is integrated with a loss function, an upper bound on the average error is obtained. Nonlinear (below threshold) effects are included. The problem is viewed in a Euclidean space. Evaluation of the probability density can be reduced to integrating the probability density of the observation over part of a hyperplane. By bounding the integrand, and using a larger part of the hyperplane, an upper bound is obtained. The resulting bound on mean-square error is quite close for the cases calculated.
Keywords :
Nonlinearities; Parameter estimation; maximum-likelihood (ML) estimation; Additive white noise; Estimation error; Gaussian noise; Maximum a posteriori estimation; Maximum likelihood estimation; Nonlinear systems; Parameter estimation; Radar; Solid modeling; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1968.1054132
Filename :
1054132
Link To Document :
بازگشت