DocumentCode
911034
Title
Asymptotically efficient quantizing
Author
Gish, Herbert ; Pierce, John N.
Volume
14
Issue
5
fYear
1968
fDate
9/1/1968 12:00:00 AM
Firstpage
676
Lastpage
683
Abstract
It is shown, under weak assumptions on the density function of a random variable and under weak assumptions on the error criterion, that uniform quantizing yields an output entropy which asymptotically is smaller than that for any other quantizer, independent of the density function or the error criterion. The asymptotic behavior of the rate distortion function is determined for the class of
th law loss functions, and the entropy of the uniform quantizer is compared with the rate distortion function for this class of loss functions. The extension of these results to the quantizing of sequences is also given. It is shown that the discrepancy between the entropy of the uniform quantizer and the rate distortion function apparently lies with the inability of the optimal quantizing shapes to cover large dimensional spaces without overlap. A comparison of the entropies of the uniform quantizer and of the minimum-alphabet quantizer is also given.
th law loss functions, and the entropy of the uniform quantizer is compared with the rate distortion function for this class of loss functions. The extension of these results to the quantizing of sequences is also given. It is shown that the discrepancy between the entropy of the uniform quantizer and the rate distortion function apparently lies with the inability of the optimal quantizing shapes to cover large dimensional spaces without overlap. A comparison of the entropies of the uniform quantizer and of the minimum-alphabet quantizer is also given.Keywords
Quantization (signal); Signal quantization; Density functional theory; Distortion measurement; Entropy; Helium; Laboratories; Quantization; Random variables; Rate-distortion; Shape;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/TIT.1968.1054193
Filename
1054193
Link To Document