DocumentCode
911453
Title
Multisurface method of pattern separation
Author
Mangasarian, Olvi L.
Volume
14
Issue
6
fYear
1968
fDate
11/1/1968 12:00:00 AM
Firstpage
801
Lastpage
807
Abstract
Let two sets of patterns be represented by two finite point sets in an
-dimensional Euclidean space
. If the convex hulls of the two sets do not intersect, the sets can be strictly separated by a plane. Such a plane can be constructed by the Motzkin-Schoenberg error-correction procedure or by linear programming. More often than not, however, the convex hulls of the two point sets do intersect, in which case strict separation by a plane is not possible any more. One may then resort to separation by more than one plane. In this paper, we show how two sets can be strictly separated by one or more planes or surfaces (nonlinear manifolds) via linear programming. A computer program that implements the present method has been written and successfully tested on a number of real problems.
-dimensional Euclidean space
. If the convex hulls of the two sets do not intersect, the sets can be strictly separated by a plane. Such a plane can be constructed by the Motzkin-Schoenberg error-correction procedure or by linear programming. More often than not, however, the convex hulls of the two point sets do intersect, in which case strict separation by a plane is not possible any more. One may then resort to separation by more than one plane. In this paper, we show how two sets can be strictly separated by one or more planes or surfaces (nonlinear manifolds) via linear programming. A computer program that implements the present method has been written and successfully tested on a number of real problems.Keywords
Linear programming; Pattern classification; Correlators; Information theory; Linear programming; Testing;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/TIT.1968.1054229
Filename
1054229
Link To Document