Title :
Transient Simulation of Silicon Devices and Circuits
Author :
Bank, Randolph E. ; Coughran, William M., Jr. ; Fichtner, Wolfgang ; Grosse, Eric H. ; Rose, Donald J. ; Smith, R. Kent
Author_Institution :
Mathematics Department, University of California, San Diego, La Jolla, CA, USA
fDate :
10/1/1985 12:00:00 AM
Abstract :
In this paper, we present an overview of the physical principles and numerical methods used to solve the coupled system of nonlinear partial differential equations that model the transient behavior of silicon VLSI device structures. We also describe how the same techniques are applicable to circuit simulation. A composite linear multistep formula is introduced as the time-integration scheme. Newton-iterative methods are exploited to solve the nonlinear equations that arise at each time step. We also present a simple data structure for nonsymmetric matrices with symmetric nonzero structures that facilitates iterative or direct methods with substantial efficiency gains over other storage schemes. Several computational examples, including a CMOS latchup problem, are presented and discussed.
Keywords :
Bipolar integrated circuits; Circuit simulation; Data structures; MOSFET circuits; Nonlinear equations; Numerical simulation; Silicon devices; Switching circuits; Very large scale integration; Wires;
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
DOI :
10.1109/TCAD.1985.1270142