DocumentCode :
913691
Title :
Nonbinary random error-correcting codes (Corresp.)
Author :
Wolf, J.
Volume :
16
Issue :
2
fYear :
1970
fDate :
3/1/1970 12:00:00 AM
Firstpage :
236
Lastpage :
237
Abstract :
Primitive BCH codes with symbols from GF(q) and designed distance d have parameter values begin{align} text{block length} &= n = q^m - 1 \\ text{check symbols/block} &= r leq m(d - 1) end{align} where m is any positive integer. For many nonbinary BCH codes (called maximally redundant codes), the maximum number of check symbols per block is required, i.e. r = m(d - 1) . Conditions whereby a primitive nonbinary BCH code is maximally redundant are discussed. It is shown that a class of codes exists, with symbols from GF(q) , based upon doubly lengthened Reed-Solomon codes over GF(q^m) , having parameter values begin{align} text{block length} &= n = m(q^m + 1) \\ text{check symbols/block} &= r = m(d - 1) \\ text{designed distance} &= d end{align} where again m is any positive integer. Thus this class of codes extends the block length of maximally redundant codes by a multiplicative factor exceeding m , while retaining the same designed distance and same number of check symbols.
Keywords :
BCH codes; Reed-Solomon codes; Error correction codes; Parity check codes; Polynomials; Reed-Solomon codes; Sufficient conditions;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1970.1054439
Filename :
1054439
Link To Document :
بازگشت