DocumentCode :
915346
Title :
Formulating Face Verification With Semidefinite Programming
Author :
Yan, Shuicheng ; Liu, Jianzhuang ; Tang, Xiaoou ; Huang, Thomas S.
Author_Institution :
Nanyang Technol. Univ., Singapore
Volume :
16
Issue :
11
fYear :
2007
Firstpage :
2802
Lastpage :
2810
Abstract :
This paper presents a unified solution to three unsolved problems existing in face verification with subspace learning techniques: selection of verification threshold, automatic determination of subspace dimension, and deducing feature fusing weights. In contrast to previous algorithms which search for the projection matrix directly, our new algorithm investigates a similarity metric matrix (SMM). With a certain verification threshold, this matrix is learned by a semidefinite programming approach, along with the constraints of the kindred pairs with similarity larger than the threshold, and inhomogeneous pairs with similarity smaller than the threshold. Then, the subspace dimension and the feature fusing weights are simultaneously inferred from the singular value decomposition of the derived SMM. In addition, the weighted and tensor extensions are proposed to further improve the algorithmic effectiveness and efficiency, respectively. Essentially, the verification is conducted within an affine subspace in this new algorithm and is, hence, called the affine subspace for verification (ASV). Extensive experiments show that the ASV can achieve encouraging face verification accuracy in comparison to other subspace algorithms, even without the need to explore any parameters.
Keywords :
face recognition; matrix algebra; face verification; semidefinite programming; similarity metric matrix; subspace learning techniques; Automatic programming; Bayesian methods; Design methodology; Eigenvalues and eigenfunctions; Linear discriminant analysis; Matrix decomposition; Principal component analysis; Singular value decomposition; Support vector machines; Tensile stress; Dimensionality reduction; face verification; subspace dimension determination; threshold determination; Algorithms; Artificial Intelligence; Biometry; Face; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2007.906271
Filename :
4337773
Link To Document :
بازگشت