The concept of invariance in hypothesis testing is brought to bear on the problem of detecting signals of known form and unknown energy in Gaussian noise of unknown level. The noise covariance function is assumed to be

where

is the known form of the covariance function and

is the unknown level. Classical approaches to signal detection depend on the assumption that

is known completely. Then, a correlation-type receiver that is the uniformly most powerful (UMP) test of

(signal absent) versus

(signal present) can be derived. When

is unknown, there exists no UMP test. However, it is shown in this paper that there exists a test of

versus

that is UMP-invariant for a very natural group of transformations on the space of observations. The derived test is found to be independent of knowledge about the noise level

, since the derived test (receiver) contains an error-free estimate of

. This utopian conclusion is reconciled by noting that the derived receiver can never be physically realized. It is shown that any physically realizable version of the receiver has a

-distributed test statistic. This permits choice of operating receiver thresholds and evaluation of performance characteristics.