Title :
Model Risk for European-Style Stock Index Options
Author :
Gençay, Ramazan ; Gibson, Rajna
Author_Institution :
Dept. of Econ., Simon Fraser Univ., Burnaby, BC
Abstract :
In empirical modeling, there have been two strands for pricing in the options literature, namely the parametric and nonparametric models. Often, the support for the nonparametric methods is based on a benchmark such as the Black-Scholes (BS) model with constant volatility. In this paper, we study the stochastic volatility (SV) and stochastic volatility random jump (SVJ) models as parametric benchmarks against feedforward neural network (FNN) models, a class of neural network models. Our choice for FNN models is due to their well-studied universal approximation properties of an unknown function and its partial derivatives. Since the partial derivatives of an option pricing formula are risk pricing tools, an accurate estimation of the unknown option pricing function is essential for pricing and hedging. Our findings indicate that FNN models offer themselves as robust option pricing tools, over their sophisticated parametric counterparts in predictive settings. There are two routes to explain the superiority of FNN models over the parametric models in forecast settings. These are nonnormality of return distributions and adaptive learning
Keywords :
approximation theory; feedforward neural nets; pricing; random processes; risk analysis; stochastic processes; stock markets; European-style stock index options; feedforward neural network; model risk; stochastic volatility random jump model; universal approximation; unknown option pricing function; Computer crashes; Councils; Feedforward neural networks; Neural networks; Parametric statistics; Predictive models; Pricing; Robustness; Stochastic processes; Tail; Extreme tail events; feedforward neural networks (FNNs); nonparametric methods; option pricing; risk exposure; Algorithms; Artificial Intelligence; Computer Simulation; Decision Support Techniques; Europe; Game Theory; Investments; Models, Economic; Risk Assessment;
Journal_Title :
Neural Networks, IEEE Transactions on
DOI :
10.1109/TNN.2006.883005