DocumentCode :
917278
Title :
Influence of Inter-Layer Contact Resistances on Quench Propagation in {\\rm YBa}_{2}{\\rm Cu}_{3}{\\rm O}_{\\rm x} Coated Conductors
Author :
Chan, Wan-Kan ; Masson, Philippe J. ; Luongo, Cesar A. ; Schwartz, Justin
Author_Institution :
Nat. High Magn. Lab., Tallahassee, FL, USA
Volume :
19
Issue :
3
fYear :
2009
fDate :
6/1/2009 12:00:00 AM
Firstpage :
2490
Lastpage :
2495
Abstract :
Superconducting power devices are considered for many applications, including airborne applications. For the devices of interest the operating temperature needs to remain around 70 K in order to minimize the weight and volume of the associated cooling system. The use of YBa2Cu3Ox (YBCO) coated conductors allows for operation at fairly high temperature (65-77 K) while maintaining high current carrying capabilities. Unfortunately, when a hot spot is created in a coated conductor wound magnet, the quench propagates so slowly that it cannot be detected using conventional methods and therefore those magnets may remain unprotected. To address this quench detection issue, we must better understand the physics of the quench and the phenomena that drive it so it can be accurately simulated. We have modeled YBCO tapes using Finite Element Analysis to assess the role of the contact resistance between the different layers composing the tape. Indeed, if the temperature rises, the YBCO layer becomes highly resistive and the current redistributes into the stabilization layers. The contact resistance between the YBCO layer and the copper is likely to play a very important role in terms of the current sharing length and voltage difference between the layers. This paper presents a model implemented in COMSOL Multiphysics, simulation results and a discussion.
Keywords :
barium compounds; contact resistance; copper; electrical resistivity; finite element analysis; high-temperature superconductors; metal-insulator boundaries; superconducting tapes; superconducting thin films; yttrium compounds; COMSOL multiphysics; YBCO tapes; YBa2Cu3Ox-Cu; airborne; coated conductor wound magnet; coated conductors; conventional methods; cooling system; current carrying capabilities; current sharing length; electrical resistivity; finite element analysis; interlayer contact resistances; operating temperature; quench propagation; superconducting power devices; temperature 65 K to 77 K; Coated conductors; FEA simulation; normal zone propagation velocity; quench;
fLanguage :
English
Journal_Title :
Applied Superconductivity, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8223
Type :
jour
DOI :
10.1109/TASC.2009.2018514
Filename :
4982566
Link To Document :
بازگشت