DocumentCode :
917568
Title :
Lower and upper bounds on the optimal filtering error of certain diffusion processes
Author :
Zakai, Moshe ; Ziv, Jacob
Volume :
18
Issue :
3
fYear :
1972
fDate :
5/1/1972 12:00:00 AM
Firstpage :
325
Lastpage :
331
Abstract :
The optimal nonlinear filtering of certain vector-valued diffusion processes embedded in white noise is considered. We derive upper and lower bounds on the minimal causal mean-square error. The derivation of the lower bound is based on information-theoretic considerations, namely the rate-distortion function ( \\varepsilon -entropy). The upper bounds are based on linear-filtering arguments. It is demonstrated that for a wide class of high-precision systems, the upper and lower bounds are tight within a factor of 2 or better.
Keywords :
Diffusion processes; Nonlinear filtering; Stochastic processes; Associate members; Diffusion processes; Filtering; Jacobian matrices; Maximum likelihood detection; Motion estimation; Nonlinear filters; Rate-distortion; Upper bound; White noise;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1972.1054825
Filename :
1054825
Link To Document :
بازگشت