DocumentCode :
91919
Title :
Discriminant Tensor Spectral–Spatial Feature Extraction for Hyperspectral Image Classification
Author :
Zisha Zhong ; Bin Fan ; Jiangyong Duan ; Lingfeng Wang ; Kun Ding ; Shiming Xiang ; Chunhong Pan
Author_Institution :
Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
Volume :
12
Issue :
5
fYear :
2015
fDate :
May-15
Firstpage :
1028
Lastpage :
1032
Abstract :
We propose to integrate spectral-spatial feature extraction and tensor discriminant analysis for hyperspectral image classification. First, we apply remarkable spectral-spatial feature extraction approaches in the hyperspectral cube to extract a feature tensor for each pixel. Then, based on class label information, local tensor discriminant analysis is used to remove redundant information for subsequent classification procedure. The approach not only extracts sufficient spectral-spatial features from original hyperspectral images but also gets better feature representation owing to tensor framework. Comparative results on two benchmarks demonstrate the effectiveness of our method.
Keywords :
feature extraction; geophysical image processing; hyperspectral imaging; image classification; remote sensing; class label information; discriminant tensor spectral-spatial feature extraction; hyperspectral image classification; local tensor discriminant analysis; Accuracy; Feature extraction; Hyperspectral imaging; Tensile stress; Vectors; Discriminative tensor representation; hyperspectral classification; spectral–spatial feature extraction; spectral???spatial feature extraction;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
Publisher :
ieee
ISSN :
1545-598X
Type :
jour
DOI :
10.1109/LGRS.2014.2375188
Filename :
6985594
Link To Document :
بازگشت