DocumentCode :
919593
Title :
Multifold Euclidean geometry codes
Author :
Lin, Shu
Volume :
19
Issue :
4
fYear :
1973
fDate :
7/1/1973 12:00:00 AM
Firstpage :
537
Lastpage :
548
Abstract :
This paper presents a class of majority-logic decodable codes whose structure is based on the structural properties of Euclidean geometries (EG) and codes that are invariant under the affine group of permutations. This new class of codes contains the ordinary EG codes and some generalized EG codes as subclasses. One subclass of new codes is particularly interesting: they are the most efficient majority-logic decodable codes that have been constructed.
Keywords :
Geometry codes; Majority logic decoding; Concrete; Decoding; Galois fields; Geometry; Parity check codes; Sufficient conditions;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1973.1055019
Filename :
1055019
Link To Document :
بازگشت