DocumentCode :
920458
Title :
A theorem on the entropy of certain binary sequences and applications--I
Author :
Wyner, Aaron D. ; Ziv, Jacob
Volume :
19
Issue :
6
fYear :
1973
fDate :
11/1/1973 12:00:00 AM
Firstpage :
769
Lastpage :
772
Abstract :
In this, the first part of a two-part paper, we establish a theorem concerning the entropy of a certain sequence of binary random variables. In the sequel we will apply this result to the solution of three problems in multi-user communication, two of which have been open for some time. Specifically we show the following. Let X and Y be binary random n -vectors, which are the input and output, respectively, of a binary symmetric channel with "crossover" probability p_0 . Let H{X} and H{ Y} be the entropies of X and Y , respectively. Then begin{equation} begin{split} frac{1}{n} H{X} geq h(alpha_0), qquad 0 leq alpha_0 &leq 1, Rightarrow \\ qquad qquad &qquad frac{1}{n}H{Y} geq h(alpha_0(1 - p_0) + (1 - alpha_0)p_0) end{split} end{equation} where h(\\lambda ) = -\\lambda \\log \\lambda - (1 - \\lambda ) \\log (l - \\lambda ), 0 \\leq \\lambda \\leq 1 .
Keywords :
Entropy functions; Random variables; Sequences; Binary sequences; Entropy; Jacobian matrices; Memoryless systems; Probability distribution; Random variables;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1973.1055107
Filename :
1055107
Link To Document :
بازگشت