DocumentCode :
921772
Title :
Dextrous hand grasping force optimization
Author :
Buss, Martin ; Hashimoto, Bdeki ; Moore, John B.
Volume :
12
Issue :
3
fYear :
1996
fDate :
6/1/1996 12:00:00 AM
Firstpage :
406
Lastpage :
418
Abstract :
A key goal in dextrous robotic hand grasping is to balance external forces and at the same time achieve grasp stability and minimum grasping energy by choosing an appropriate set of internal grasping forces. Since it appears that there is no direct algebraic optimization approach, a recursive optimization, which is adaptive for application in a dynamic environment, is required. One key observation in this paper is that friction force limit constraints and force balancing constraints are equivalent to the positive definiteness of a certain matrix subject to linear constraints. Based on this observation, we formulate the task of grasping force optimization as an optimization problem on the smooth manifold of linearly constrained positive definite matrices for which there are known globally exponentially convergent solutions via gradient flows. There are a number of versions depending on the Riemannian metric chosen, each with its advantages, Schemes involving second derivative information for quadratic convergence are also studied. Several forms of constrained gradient flows are developed for point contact and soft-finger contact friction models. The physical meaning of the cost index used for the gradient flows is discussed in the context of grasping force optimization. A discretized version for real-time applicability is presented. Numerical examples demonstrate the simplicity, the good numerical properties, and optimality of the approach
Keywords :
force control; manipulators; matrix algebra; optimal control; stability; Riemannian metric; cost index; dextrous robotic hand grasping; external force balancing; force balancing constraints; friction force limit constraints; globally exponentially convergent solutions; gradient flows; grasp stability; grasping force optimization; linearly constrained positive definite matrices; minimum grasping energy; recursive optimization; soft-finger contact friction models; Adaptive systems; Constraint optimization; Cost function; Fingers; Friction; Grasping; Intelligent robots; Manipulators; Programmable control; Robust control;
fLanguage :
English
Journal_Title :
Robotics and Automation, IEEE Transactions on
Publisher :
ieee
ISSN :
1042-296X
Type :
jour
DOI :
10.1109/70.499823
Filename :
499823
Link To Document :
بازگشت