Countable prefix codeword sets are constructed with the universal property that assigning messages in order of decreasing probability to codewords in order of increasing length gives an average code-word length, for any message set with positive entropy, less than a constant times the optimal average codeword length for that source. Some of the sets also have the asymptotically optimal property that the ratio of average codeword length to entropy approaches one uniformly as entropy increases. An application is the construction of a uniformly universal sequence of codes for countable memoryless sources, in which the

th code has a ratio of average codeword length to source rate bounded by a function of

for all sources with positive rate; the bound is less than two for

and approaches one as

increases.