DocumentCode :
923826
Title :
Majority logic decoding using combinatorial designs (Corresp.)
Author :
Rahman, M. ; Blake, Ian F.
Volume :
21
Issue :
5
fYear :
1975
fDate :
9/1/1975 12:00:00 AM
Firstpage :
585
Lastpage :
587
Abstract :
If the vectors of some constant weight in the dual of a binary linear code support a (\\nu,b,r,k,\\lambda ) balanced incomplete block design (BIBD), then it is possible to correct [(r + 2 - 1)/2\\lambda ] errors with one-step majority logic decoding. This bound is generalized to the case when the vectors of certain constant weight in the dual code support a t -design. With the aid of this bound, the one-step majority logic decoding of the first, second, and third order Reed-Muller codes is examined.
Keywords :
Majority logic decoding; Reed-Muller codes; Algorithm design and analysis; Binary codes; Councils; Decoding; Error correction codes; Linear code; Logic design; Notice of Violation; Parity check codes; Vectors;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1975.1055428
Filename :
1055428
Link To Document :
بازگشت