DocumentCode :
925063
Title :
Complexity of acceptors for prefix codes (Corresp.)
Author :
Brown, Donna J. ; Elias, Peter
Volume :
22
Issue :
3
fYear :
1976
fDate :
5/1/1976 12:00:00 AM
Firstpage :
357
Lastpage :
359
Abstract :
For a given finite set of messages and their assigned probabilities, Huffman\´s procedure gives a method of computing a length set (a set of codeword lengths) that is optimal in the sense that the average word length is minimized. Corresponding to a particular length set, however, there may be more than one code. Let L(n) consist of all length sets with largest term n , and, for any \\ell \\in L(n) , let {cal S}( \\ell ) be the smallest number of states in any finite-state acceptor which accepts a set of codewords with length set \\ell . It is shown that, for all n > 1 , n^{2}/(16 \\log _{2} n) \\leq \\max {cal S}(\\ell ) \\leq 0(n^{2}). \\ell \\in L(n)
Keywords :
Automata; Decoding; Convolutional codes; Decoding; Encoding; Law; Legal factors; Notice of Violation; Viterbi algorithm;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1976.1055546
Filename :
1055546
Link To Document :
بازگشت