• DocumentCode
    925084
  • Title

    Linear feedback rate bounds for regressive channels (Corresp.)

  • Author

    Butman, S.

  • Volume
    22
  • Issue
    3
  • fYear
    1976
  • fDate
    5/1/1976 12:00:00 AM
  • Firstpage
    363
  • Lastpage
    366
  • Abstract
    This article presents new tighter upper bounds on the rate of Gaussian autoregressive channels with linear feedback. The separation between the upper and lower bounds is small. We have frac{1}{2} \\ln \\left( 1 + \\rho \\left( 1+ \\sum _{k=1}^{m} \\alpha _{k} x^{- k} \\right)^{2} \\right) \\leq C_{L} \\leq frac{1}{2} \\ln \\left( 1+ \\rho \\left( 1+ \\sum _{k = 1}^{m} \\alpha _{k} / \\sqrt {1 + \\rho} \\right)^{2} \\right), mbox{a\\ll \\rho} , where \\rho = P/N_{0}W, \\alpha _{l}, \\cdots , \\alpha _{m} are regression coefficients, P is power, W is bandwidth, N_{0} is the one-sided innovation spectrum, and x is a root of the polynomial (X^{2} - 1)x^{2m} - \\rho \\left( x^{m} + \\sum ^{m}_{k=1} \\alpha _{k} x^{m - k} \\right)^{2} = 0. It is conjectured that the lower bound is the feedback capacity.
  • Keywords
    Autoregressive processes; Feedback communication; Bandwidth; Channel capacity; Colored noise; Feedback; Forward contracts; Information theory; Mathematics; Propulsion; Space technology; Upper bound;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.1976.1055548
  • Filename
    1055548