DocumentCode :
925084
Title :
Linear feedback rate bounds for regressive channels (Corresp.)
Author :
Butman, S.
Volume :
22
Issue :
3
fYear :
1976
fDate :
5/1/1976 12:00:00 AM
Firstpage :
363
Lastpage :
366
Abstract :
This article presents new tighter upper bounds on the rate of Gaussian autoregressive channels with linear feedback. The separation between the upper and lower bounds is small. We have frac{1}{2} \\ln \\left( 1 + \\rho \\left( 1+ \\sum _{k=1}^{m} \\alpha _{k} x^{- k} \\right)^{2} \\right) \\leq C_{L} \\leq frac{1}{2} \\ln \\left( 1+ \\rho \\left( 1+ \\sum _{k = 1}^{m} \\alpha _{k} / \\sqrt {1 + \\rho} \\right)^{2} \\right), mbox{a\\ll \\rho} , where \\rho = P/N_{0}W, \\alpha _{l}, \\cdots , \\alpha _{m} are regression coefficients, P is power, W is bandwidth, N_{0} is the one-sided innovation spectrum, and x is a root of the polynomial (X^{2} - 1)x^{2m} - \\rho \\left( x^{m} + \\sum ^{m}_{k=1} \\alpha _{k} x^{m - k} \\right)^{2} = 0. It is conjectured that the lower bound is the feedback capacity.
Keywords :
Autoregressive processes; Feedback communication; Bandwidth; Channel capacity; Colored noise; Feedback; Forward contracts; Information theory; Mathematics; Propulsion; Space technology; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1976.1055548
Filename :
1055548
Link To Document :
بازگشت