DocumentCode :
925332
Title :
Exact maximum likelihood estimation of the parameter in the AR(1) process after hard limiting (Corresp.)
Author :
Kedem, Benjamin
Volume :
22
Issue :
4
fYear :
1976
fDate :
7/1/1976 12:00:00 AM
Firstpage :
491
Lastpage :
493
Abstract :
We consider the problem of maximum likelihood estimation of the parameter in the first-order autoregressive stationary process after loss of information due to hard limiting. For this particular transformation, the exact maximum likelihood estimator is found, and its distribution function is approximated. A numerical comparison with the common estimate obtained from the original data shows that, for moderate sample sizes and small variance of the error term, very little precision is lost as a result of the binary transformation. On the other hand, the suggested estimator is simple and easy to compute.
Keywords :
Autoregressive processes; Limiting; Parameter estimation; maximum-likelihood (ML) estimation; Additive white noise; Automatic control; Communication system control; Distribution functions; Equations; Filters; Maximum likelihood estimation; Recursive estimation; Smoothing methods; Technological innovation;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1976.1055571
Filename :
1055571
Link To Document :
بازگشت