• DocumentCode
    925443
  • Title

    Convolutions over residue classes of quadratic integers

  • Author

    Reed, Irving S. ; Truong, T.K.

  • Volume
    22
  • Issue
    4
  • fYear
    1976
  • fDate
    7/1/1976 12:00:00 AM
  • Firstpage
    468
  • Lastpage
    475
  • Abstract
    A Fourier-like transform is defined over a ring of quadratic integers modulo a prime number q in the quadratic field R(\\sqrt {m}) , where m is a square-free integer. If q is a Fermat prime, one can utilize the fast Fourier transform (FFT) algorithm over the resulting finite fields to yield fast convolutions of quadratic integer sequences in R(\\sqrt {m}) . The theory is also extended to a direct sum of such finite fields. From these results, it is shown that Fourier-like transforms can also be defined over the quadratic integers in R( \\sqrt {m}) modulo a nonprime Fermat number.
  • Keywords
    Convolution; Number-theoretic transforms; Block codes; Convolutional codes; Discrete Fourier transforms; Discrete transforms; Electrons; Error correction codes; Fast Fourier transforms; Fourier transforms; Galois fields; Welding;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.1976.1055583
  • Filename
    1055583