DocumentCode :
926805
Title :
Exponential Fourier densities on S2 and optimal estimation and detection for directional processes
Author :
Lo, James Ting-Ho ; Eshleman, Linda R.
Volume :
23
Issue :
3
fYear :
1977
fDate :
5/1/1977 12:00:00 AM
Firstpage :
321
Lastpage :
336
Abstract :
Two classes of probability densities, the exponential Fourier densities and the exponential trigonometric densities, are introduced on the unit sphere, as well as four kinds of displacements. In general, neither class is closed under the operation of taking conditional distributions with respect to any of the displacements. A combined usage of both classes is required to study the estimation and detection models obtained from various combinations of the displacements. The merits and disadvantages of each model are discussed. Recursive formulas for the conditional densities and the likelihood ratios are derived for many of the models. The additive measurement noise case is also considered in detail. An error criterion for direction estimation is presented with respect to which the optimal estimates can be easily computed from the probability distribution. A deficiency of the models and techniques developed in this paper is that random driving terms are disallowed in the signal processes.
Keywords :
Signal detection; Signal estimation; Stochastic processes; Additive noise; Distributed computing; Extraterrestrial measurements; Mathematics; Noise measurement; Probability distribution; Signal processing; State-space methods; Stochastic processes; Wind forecasting;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1977.1055713
Filename :
1055713
Link To Document :
بازگشت