DocumentCode :
927526
Title :
High-radix transforms for Reed-Solomon codes over Fermat primes (Corresp.)
Author :
Liu, Kuang Y. ; Reed, Irving S. ; Truong, T.K.
Volume :
23
Issue :
6
fYear :
1977
fDate :
11/1/1977 12:00:00 AM
Firstpage :
776
Lastpage :
778
Abstract :
It is shown that a high-radix fast Fourier transform (FFT) with generator \\gamma = 3 over GF (F_{n}) , where F_{n} = 2^{2}^{n\´} + 1 is a Fermat prime, can be used for encoding and decoding of Reed-Solomon (RS) codes of length 2^{{2}^{n}} . Such an RS decoder is considerably faster than a decoder using the usual radix 2 FFT. This technique applies most ideally to a 16-error-correcting, 256-symbol RS code of 8 bits being considered currently for space communication applications. This special code can be encoded and decoded rapidly using a high-radix FFT algorithm over GF (F_{3}) .
Keywords :
DFT; Decoding; Discrete Fourier transforms (DFT´s); Number-theoretic transforms; Reed-Solomon codes; Transform coding; Arithmetic; Concatenated codes; Decoding; Encoding; Fast Fourier transforms; NASA; Parity check codes; Power generation; Propulsion; Reed-Solomon codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1977.1055786
Filename :
1055786
Link To Document :
بازگشت