DocumentCode :
927820
Title :
Some results on arithmetic codes of composite length
Author :
Hwang, Tai-yang ; Hartmann, Carlos R I
Volume :
24
Issue :
1
fYear :
1978
fDate :
1/1/1978 12:00:00 AM
Firstpage :
93
Lastpage :
99
Abstract :
A new upper bound on the minimum distance of binary cyclic arithmetic codes of composite length is derived. New classes of binary cyclic arithmetic codes of composite length are introduced. The error correction capability of these codes is discussed, and in some cases the actual minimum distance is found. Decoding algorithms based on majority-logic decision are proposed for these codes.
Keywords :
Arithmetic codes; Cyclic codes; Majority logic decoding; Arithmetic; Block codes; Data communication; Decoding; Error correction; Error correction codes; Information science; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1978.1055815
Filename :
1055815
Link To Document :
بازگشت