DocumentCode :
927861
Title :
Partial-optimal piecewise decoding of linear codes
Author :
Delsarte, Philippe
Volume :
24
Issue :
1
fYear :
1978
fDate :
1/1/1978 12:00:00 AM
Firstpage :
70
Lastpage :
75
Abstract :
Let A and B be matrices over a finite field GF(q) , with same column size n, having linearly independent rows. The problem is to find an optimal estimate of the "information" uB^{T} from the partial "syndrome" vA^{T} , with the condition uA^{T} = 0 , for a transmission u \\rightarrow v of n -tuples on a q -ary totally symmetric memoryless channel. The best estimate has the form vB^{T}-f(vA^{T}) , where f(x) is the value of y maximizing a so-called decision function \\Delta (x,y) . Explicit expressions are obtained for \\Delta ; they allow computation of the critical probabilities of the channel. The theory is applied to multidimensional orthogonal check set decoding.
Keywords :
Decoding; Linear codes; Broadcasting; Capacity planning; Data compression; Degradation; Information theory; Interference; Linear code; Maximum likelihood decoding; Memoryless systems; Notice of Violation;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1978.1055819
Filename :
1055819
Link To Document :
بازگشت