DocumentCode :
927930
Title :
A stochastic framework for recursive computation of spline functions--Part I: Interpolating splines
Author :
Weinert, Howard L. ; Sidhu, Gursharan S.
Volume :
24
Issue :
1
fYear :
1978
fDate :
1/1/1978 12:00:00 AM
Firstpage :
45
Lastpage :
50
Abstract :
The method for exploiting stochastic smoothing techniques to develop dynamical recursive algorithms for the deterministic problem of d interpolation (optimal curve fitting) is shown. A reproducing kernel Hilbert space approach is used to develop an explicit correspondence between spline interpolation and linear least-squares smoothing of a particular zero-mean random process. This random process is shown to be the output of a white-noise-driven dynamical system whose parameters and initial conditions are fixed by the functional form chosen for the spline. A recursive algorithm is then derived for this (nonstandard) smoothing problem, and thus also for the original spline interpolation problem.
Keywords :
Least-squares estimation; Smoothing methods; Spline functions; Hilbert space; Interpolation; Kernel; Least squares approximation; Polynomials; Random processes; Recursive estimation; Smoothing methods; Spline; Stochastic processes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1978.1055825
Filename :
1055825
Link To Document :
بازگشت