DocumentCode :
928160
Title :
All binary 3-error-correcting BCH codes of length 2^m-i have covering radius 5 (Corresp.)
Author :
Helleseth, Tor
Volume :
24
Issue :
2
fYear :
1978
fDate :
3/1/1978 12:00:00 AM
Firstpage :
257
Lastpage :
258
Abstract :
Van der Horst and Berger have conjectured that the covering radius of the binary 3-error-correcting Bose-Chaudhuri-Hocquenghem (BCH) code of length 2^{m} - l, m \\geq 4 is 5. Their conjecture was proved earlier when m \\equiv 0, 1 , or 3 (mod 4). Their conjecture is proved when m \\equiv 2 (mod 4).
Keywords :
BCH codes; Hamming weight; Linear code;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1978.1055847
Filename :
1055847
Link To Document :
بازگشت