DocumentCode :
929855
Title :
Lee metric codes over integer residue rings (Corresp.)
Author :
Satyanarayana, Chandra
Volume :
25
Issue :
2
fYear :
1979
fDate :
3/1/1979 12:00:00 AM
Firstpage :
250
Lastpage :
254
Abstract :
A method for constructing Lee metric codes over arbitrary alphabet sizes using the elementary concepts of module theory is presented. The codes possess a high degree of symmetry. Codes with two information symbols over arbitrary alphabet sizes are cyclic reversible. For alphabet sizes which are a power of two or an odd prime number, codes with one information symbol are reversible and equidistant, and codes having more than two information symbols are quasi-cyclic reversible. Binary Reed-Muller codes arise as subcodes of the codes presented. A method of constructing equidistant Lee metric codes analogous to maximum length shift register codes is presented.
Keywords :
Error-correcting codes; Ring theory; Amplitude modulation; Character generation; Galois fields; Modulation coding; Phase modulation; Pulse modulation; Shift registers;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.1979.1056017
Filename :
1056017
Link To Document :
بازگشت